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Abstract

In eigenvalue problems of elastic media in free vibration, a discrete model is usually derived by using the finite element

method and the accuracy of the elements is of concern in practical applications. The present note reviews the accuracy of

certain classes of finite element models in two-point boundary eigenvalue problems and points to some special elements

that exist within these classes.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In eigenvalue problems of elastic media in free vibration, a discrete model is usually derived by using the
finite element method and the accuracy of the elements is of concern in practical applications. However, the
accuracy of the approximate eigenvalues can be analyzed in explicit analytical forms only in few simple
problems that can be modeled by a uniform mesh of identical elements. Such a problem is the determination of
the eigenvalues of uniform bars in elementary axial or torsional vibration, or of a vibrating string. The basic
two-degree-of-freedom (2dof) two-node finite element model for this problem is now a classical one and can be
found in textbooks on the finite element method. The stiffness and mass matrices of this element are, in non-
dimensional form,

K ¼
1 �1

�1 1

� �
; and M ¼

1

6

2 1

1 2

� �
, (1)

respectively. This model is based on a linear displacement field. It is well known from the variational
ramifications of the finite element method that such complete and conforming elements give upper bounds to
the exact eigenvalues over the whole of the approximate eigenvalue spectrum and, for the eigenvalue problem
under consideration, for an element based on a complete polynomial displacement field of order m, the
approximate upper bounds to the exact eigenvalues are accurate to O(n�2m) over a uniform mesh of n elements
of equal length. Thus, for the above basic element, the accuracy of the upper bounds is O(n�2).
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Recently, Fried and Chavez [1] noted that, lower bounds to the eigenvalues of a vibrating string can be
predicted to O(n�4) by using the element mass matrix

M ¼
1

12

5 1

1 5

� �
, (2)

in place of the mass matrix of Eq. (1) (here, the notation is slightly different than that of Ref. [1] due to use of
non-dimensional element mass and stiffness matrices and slight changes in the nomenclature). The authors
suggest an ingenious formulation of Eq. (2) as the d ¼ 0.5 case of the element mass matrix

MðdÞ ¼
1

6

2 1

1 2

� �
þ

d
6

1 �1

�1 1

� �
. (3)

The case of d ¼ 0 gives the mass matrix of Eq. (1), and the d ¼ 1 element, on the other hand, corresponds to
the Rayleigh or Duncan model of mass lumping, which is known to yield, when used with the element stiffness
matrix K, lower bounds to the exact eigenvalues to the accuracy O(n�2) [2].

The O(n�4) accuracy of d ¼ 0.5 element is interesting in that, it gives the one order higher accuracy of the
quadratic polynomial displacement element at the matrix size of the basic element. For this reason, it is said to
be a ‘superaccurate’ element [1]. Incidentally, it may be also of interest to note that, this element was first
proposed, from different considerations, by Murty [3] in relation to axial vibration of uniform bars, which is
governed by the same eigenvalue problem as that of the vibrating string.

For this type eigenvalue problem, the spectral convergence criteria for any element having 2dof (called a
first-order element) have been given in Ref. [4]. It follows from this study that, that any first-order element
having the stiffness matrix K, Eq. (1), will converge to the exact eigenvalues over a uniform mesh, if the
element mass matrix is of the form

MðgÞ ¼
1

4

1 1

1 1

� �
þ

1

g
1 �1

�1 1

� �
, (4)

where g40. It is clear that, the d ¼ 0, 0.5 and 1 elements of Ref. [1] correspond, respectively, to the above
g ¼ 12, 6 and 4 elements. It is proved in Ref. [4] that, the g 4p2 elements give upper bounds and the gp6
elements give lower bounds to the accuracy O(n�2), and that the accuracy of the g ¼ 6 element is O(n�4). A
first-order element of accuracy O(n�6) does not exist, because first-order elements have only a single tuning
parameter, that is, g.

Also considered in Ref. [1] is an element having 3dof. This is based on the finite element model having a
quadratic displacement field with an internal node at the center of the element. In non-dimensional form, the
mass and stiffness matrices of this element are, respectively,

M ¼
1

30

4 2 �1

2 16 2

�1 2 4

2
64

3
75, (5)

and

K ¼
1

3

7 �8 1

�8 16 �8

1 �8 7

2
64

3
75. (6)

The element displacement vector associated with these matrices is {u(0) u(0.5) u(1)}, where u(x) denotes a
non-dimensional displacement and 0pxp1 is the element domain. In Ref. [1], the foregoing element mass
matrix is generalized, in the spirit of Eq. (3), as

MðbÞ ¼
1

30

4 2 �1

2 16 2

�1 2 4

2
64

3
75þ b

30

1 �2 1

�2 4 �2

1 �2 1

2
64

3
75, (7)
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so that the b ¼ 0 gives Eq. (5) and b ¼ 1 corresponds to a lumped element mass matrix. The authors show that
the b ¼ 2/3 element gives lower bounds to the smallest eigenvalue to the accuracy of O(n�6), whereas the
corresponding accuracy of b ¼ 0 or 1 elements is O(n�4). The proof is numerical and limited to the smallest
eigenvalue.

Convergence criteria for any element having 3dof, called a second-order element, have been given in Ref. [4]
in analytical form, over the whole of the approximate eigenvalue spectrum. The present note will establish the
place of the above b elements within possible second-order elements, and point out to further special elements
that exist within this class.

2. Second-order elements

Without loss of generality, the dynamic stiffness matrix, D ¼ K� lM, of a finite element of the type of
problem under consideration can be condensed to a 2� 2 matrix by eliminating the dof corresponding to the
internal dofs. Here, l is a non-dimensional eigenvalue parameter referred to the element length and, for a
uniform mesh of n elements of equal length (which is always the case throughout the present analysis), the
non-dimensional eigenvalue parameter referred to the string length is given by s 2

¼ ln2. The condensed
element dynamic stiffness matrix is independent of the location and type of the internal dofs and can be
expressed as

Z ¼
1

2

GðlÞ þHðlÞ GðlÞ �HðlÞ

GðlÞ �HðlÞ GðlÞ þHðlÞ

" #
. (8)

The approximate eigenvalues are determined by the roots of the equation R(lr) ¼ Q(l) where

RðlrÞ ¼ tan2
ffiffiffiffi
lr
p

2

� �
; QðlÞ ¼ �

GðlÞ
HðlÞ

, (9)

and lr ¼ (pr/n)2, r ¼ 1, 2,y for a fixed–fixed string (for systems allowing free–free boundary condition,
r ¼ 0, 1, 2,y and for the fixed–free condition, r ¼ 0.5, 1.5,y). Q(l) denotes any function which increases
asymptotically from zero to infinity in the l interval (0, g), where g is the smallest positive pole of G(l) or the
smallest root of H(l), whichever is the smaller. This formulation is also valid for the first-order elements, but
in this case condensation is not necessary and Eq. (9) represents the actual element dynamic-stiffness matrix of
the admissible first-order elements, which are given by G(l) ¼ gl/4 and H(l) ¼ l�g.

For the b elements under consideration, it can be shown that, H(l) ¼ l�12 and that

QðlÞ ¼ �
lð2þ 3bÞl� 120

½ð4þ bÞl� 40�ðl� 12Þ
. (10)

This function and R(lr) are shown Fig. 1 for b ¼ 0, that is, for the quadratic polynomial finite element
model for which g ¼ 40/(4+b) ¼ 10. It can be shown that, for a given number of elements, half of the
approximate eigenvalues, l, lie in the interval (0, g) and the other half in (h, g), where h denotes the root of
H(l), h ¼ 12, and g denotes the non-zero root of G(l), g ¼ 120/(2+3b) ¼ 60. It can be shown that [4], as the
number of elements is increased, the approximate eigenvalues in the interval (h, g) pass to the interval (0, g),
whilst those already in the interval (0, g) are pushed towards the origin, l ¼ 0, and are given by the power
series

l ¼ lr 1þ
c4

4!
s2r n�2 þ

c6

6!
s4r n�4 þ

c8

8!
s6r n�6 þ

c10

10!
s8r n�8 þ � � �

� �
, (11)

ultimately, where s2r ¼ n2lr, which is in fact the exact value of the rth eigenvalue s2. The coefficients c4 and c6
can be computed using the general equations, Eqs. (22) and (23), respectively, of Ref. [4]. For the b elements, it
is found that

c4 ¼ 0; c6 ¼ 1� 3b=2. (12)

Thus, it follows that, unless b ¼ 2/3, the b elements yield eigenvalues with accuracy O(n�4), in which case,
these eigenvalues occur (ultimately) as upper bounds if b o2/3 and lower bounds if b 42/3. Then, obviously,
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Fig. 1. Characteristics of the second-order b ¼ 0 matrix displacement model: – – – Q(l); ______ R(lr).
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the b ¼ 2/3 element is accurate to O(n�6). This proves that, the O(n�6) accuracy applies ultimately not only for
the smallest eigenvalue, but for the whole of the approximate eigenvalue spectrum (ultimately, all eigenvalues
appear in the interval (0, g).

Whether the b ¼ 2/3 element ultimately gives upper or lower bounds to the eigenvalues depends on the sign
of c8. Since the expression for c8 was not given in Ref. [4], it is presented here:

c8 ¼ � 2þ 10c4
84B00ð0Þ � 84G000ð0Þ � 7B0ð0Þ � 3:5c4G

00ð0Þ

G0ð0Þ
� c6

56G00ð0Þ � 28B0ð0Þ

G0ð0Þ

þ 56
60B000ð0Þ � 15B00ð0Þ þ B0ð0Þ � 30G0000ð0Þ

G0ð0Þ
, ð13Þ

where BðlÞ ¼ GðlÞ �HðlÞ and prime denotes differentiation with respect to l. Upon using the functions G and
H for the b elements, it can be shown that c8o0 for b ¼ 2/3. This proves that the b ¼ 2/3 element is a lower
bound element ultimately, as confirmed by Fig. 2, which is the counterpart of Fig. 1 for the b ¼ 2/3 element.

The foregoing convergence characteristics strictly apply only to the approximate eigenvalues in the interval
(0, g) ultimately, however, since the approximate eigenvalues are pushed into this interval as the number of
elements in the finite element model increases to infinity, they may be considered as the intrinsic spectral
properties of the elements. For a finite number of elements, the largest half of the approximate eigenvalues will
lie in the interval (h, g). These are called superfluous eigenvalues, as they do not represent a convergent set of
eigenvalues as those in the interval (0, g). Still, the superfluous eigenvalues constitute rough approximations to
the corresponding exact eigenvalues in the interval (p2, 4p2). They will occur as upper bounds for the b ¼ 0
element, and as mixed bounds (i.e., upper bounds for some of the eigenvalues and lower bounds for the other
eigenvalues) for the b ¼ 2/3 element.

A sufficient condition for the approximate eigenvalues to make their initial appearance in the interval (0, g)
as upper (lower) bounds is g 4p2 (g op2). Noting that g ¼ 40/(4+b) for the second-order b elements under
consideration, b 440/p2�4 ¼ 0.053 (b o0.053) elements will give lower (upper) bounds initially. The initial
and ultimate enforcement of lower (upper) bounds in the interval (0, g) ensures lower (upper) bounds
throughout the approximate eigenvalue spectrum in this interval.

The above-considered b elements constitute a subclass of admissible second-order elements, which are given
by the functions [4]
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Fig. 2. Characteristics of the second-order b ¼ 2/3 (h ¼ 12)superaccurate element: – – – Q(l); ______ R(lr).
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GðlÞ ¼
ghlðl� gÞ

4gðl� gÞ
; HðlÞ ¼ l� h, (14)

where g, g, h40. For these elements, the condition for c4 ¼ 0 is

g ¼
6gh

hgþ 6h� 6g
. (15)

When this condition is satisfied, the condition for c6 ¼ 0 can be expressed as1

g ¼
120ðh� 6Þ

120� 17h
. (16)

Feasible convergent second-order elements are given by g, h4p2 and minimum(g, h)4g, and a continuous
space of superaccurate elements of accuracy O(n�6) exists in the domain of intersection of Eqs. (15) and (16)
for h4p 2. In particular, it transpires that, for h ¼ 12, g(12) ¼ 30 and g ¼ 60/7. Therefore, if h is taken equal
to 12, then the only O(n�6) element is the b ¼ 2/3 element. These superaccurate elements tend to improve
slightly as h decreases. In Fig. 3 the counterpart of Fig. 2 for the h ¼ 10 element, for which g(10) ¼ 80/3 and
g ¼ 48/5 is shown. This is also a lower bound element.

Whether there is any ‘hyperaccurate’ second-order element of accuracy O(n�8) can be examined similarly by
searching the condition for c8 ¼ 0 when c4 ¼ c6 ¼ 0. This condition, which can be derived by using Eqs. (15)
and (16) in Eq. (13), turns out to be

162h2
� 3120hþ 15120 ¼ 0, (17)

which obviously has no real solution.

3. Dual elements

In general, given the condensed dynamic stiffness-matrix, Eq. (9), the parent stiffness and mass matrices can
be found by the solution of an inverse problem. For the class of second-order elements that are based on the
1Eq. (16) supersedes Eq. (58) of Ref. [4].
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Fig. 3. Characteristics of the second-order h ¼ 10 superaccurate element: – – – Q(l); ______ R(lr).
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stiffness matrix of Eq. (6), the general form of the uncondensed dynamic-stiffness matrix can be expressed as

D ¼
1

3

7 �8 1

�8 16 �8

1 �8 7

2
64

3
75� l

30

m0 m1 m2

m1 m3 m1

m2 m1 m0

2
64

3
75. (18)

The form of the mass matrix is dictated by the symmetry of the element (the internal node being at the
center of the element) and the requirement that the function H(l) is to be linear in l (see, the second of Eq.
(14)). Upon condensing Eq. (18) to the form of Eq. (9), it follows that,

m0 þ 2m1 þm2 ¼ 15� 80=g, (19)

m3ðm0 þm2Þ � 2m2
1 ¼ 2400=g, (20)

m2 �m0 ¼ 60=h; m3 ¼ 160=g. (21)

The uncondensed mass matrix corresponding to the condensed dynamic-stiffness parameters g, h and g are
found from the solutions of this set of equations. Hence, it transpires that, the mass matrices for a given set of
these parameters exist in pairs. For the elements highlighted in the foregoing section, the pairs of the mass
matrices are given below.

The quadratic matrix displacement model of accuracy O(n�4) (b ¼ 0):

M ¼
1

30

14� 10 �8� 10 9� 10

�8� 10 16 �8� 10

9� 10 �8� 10 14� 10

2
64

3
75. (22)

The superaccurate element of accuracy O(n�6) (b ¼ 2/3):

M ¼
1

90

44� 30 �28� 30 29� 30

�28� 30 56 �28� 30

29� 30 �28� 30 44� 30

2
64

3
75. (23)
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The superaccurate element of accuracy O(n�6) (h ¼ 10)

M ¼
1

90

44� 12
ffiffiffi
5
p

�25� 12
ffiffiffi
5
p

26� 12
ffiffiffi
5
p

�25� 12
ffiffiffi
5
p

50 �25� 12
ffiffiffi
5
p

26� 12
ffiffiffi
5
p

�25� 12
ffiffiffi
5
p

44� 12
ffiffiffi
5
p

2
64

3
75. (24)

4. Conclusion

The theory of second-order two-point boundary finite elements is revisited to prove that the b ¼ 2/3 element
of Ref. [1] is an ultimately true lower bound element and its O(n�6) accuracy applies ultimately over the whole
of the approximate eigenvalue spectrum. The analysis also reveals that:

There is a multitude of ultimately convergent superaccurate second-order elements of accuracy O(n�6).
The second-order elements exist in pairs when transformed to the form of a finite element matrix

displacement model with a central internal node. It is believed that, the existence of dual elements is pointed
out here for the first time.

There are no second-order element of accuracy O(n�8).
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